

SCIENCES DE L'INGENIEUR

Séquence 4 - Activité 2

TACHE N°3

Chaîne numérique : CAO et prototypage rapide

Description de la tâche :

Conception du support moteur version 3 + test

TRAVAIL PRÉPARATOIRE

A Récupérer par copier/coller le dossier de travail de la tâche à mener.
Dossier source : (où sont les fichiers à copier)
Serveur >> Votre classe >> Documents en consultation >> SI >> Séquence 04 >> Activité 2 >> Tâche 3
Dossier de destination : (où coller les fichiers copiés)
Serveur >> Mes documents >>où bon vous semble >> Tâche 3

Accéder au contenu du dossier « Tâche 3 » et ouvrir le modeleur volumique Inventor à partir du fichier projet « Implantation moteur.ipj ». ** Appeler le professeur si l'icone n'est pas présente. Implantation moteur.ipj	OldVersions stepper-motor-28byj-48-5V Adaptateur.ipt Disque.ipt Implantation moteur.ipj lockfile.lck Support moteur.ipt
--	---

FINALISTATION DE LA GÉOMÉTRIE DU SUPPORT MOTEUR

▶ Préciser le numéro d'étape :	OldVersions
Treciser le numero d'etape	stepper-motor-28byj-48-5V
Il est à prendre dans le synoptique du document principal de l'activité.	Adaptateur.ipt
	Disque.ipt
≌ Ouvrir le fichier pièce « <u>Support moteur.ipt</u> ».	🔝 Implantation moteur.ipj
	lockfile.lck
■ Support moteur.ipt → → → → → → → → → → → → → → → → → → →	Support moteur.ipt

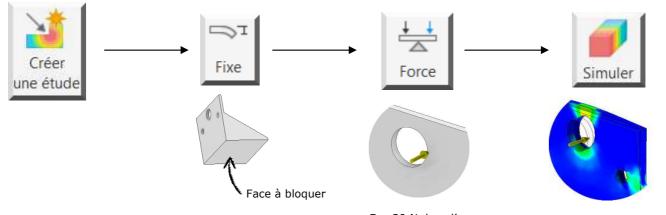
→ Compléter le fichier pièce en prenant appui sur le plan de définition donné plus loin ainsi que sur la documentation du moteur (en ligne) pour <u>trouver les dimensions manquantes</u>.

INTÉGRATION DU SUPPORT MOTEUR DANS L'ASSEMBLAGE

- Préciser le numéro d'étape : ______
 - Il est à prendre dans le synoptique du document principal de l'activité.
- → Créer un fichier de type assemblage et le nommer « Montage.iam ».
- ▶ Placer les fichiers pièces en commençant par « Support moteur.ipt ».
 - Penser à bloquer le composant « Support moteur ».
 - Les vis et les écrous sont à prendre dans le centre de contenus.
 - Référence des vis : AS 1427 Métrique M4 x 8.
 - Référence des écrous : JIS B 1181 A/B Métrique A/B M4.

¥ S'assurer que tout va bien : pas d'interférence, centrage correct du moteur, etc.

ÉVALUATION DES PERFORMANCES DU SUPPORT MOTEUR PAR SIMULATION


Contraintes techniques:

→ Le support moteur sera imprimé en 3D, ce qui impose le matériau : **PLA**

Spécifications:

- \rightarrow La pièce ne doit pas casser : la <u>contrainte maximale</u> σ_{max} qui sera fournie par la simulation doit rester inférieure à celle que peut supporter le matériau (il faudra chercher cette limite).
- \rightarrow La <u>déformation maximale</u> admise au niveau de l'alésage moteur est de $d_{max} = 1.5 \ mm$.

- ▶ Préciser le numéro d'étape :
 - Il est à prendre dans le synoptique du document principal de l'activité.
- **\(\)** Chercher en MPa la limite élastique en traction R_a du matériau PLA: $R_a =$
 - Il faut consulter la fiche matériau du PLA; elle est en ligne sous « Prototypage >> Imprimantes 3D ».
- ¥ Fixer le matériau de la pièce.
 - Le matériau de la pièce est celui de l'imprimante 3D, à savoir du PLA.
 - Faire un clic droit sur le nom de la pièce (à gauche à l'écran), prendre « Ipropriétés », onglet « Physique ».
 - Régler le matériau sur <u>ABS</u> (c'est le plus proche du PLA qui est absent...)
 - Relever pour information la masse en grammes de la pièce : m = _____ g.
 - *Solution* ✓ Valider le changement et enregistrer (CTRL + S).
- ≥ Simuler le comportement de la pièce « Support moteur.ipt ».
 - Prendre le menu « Environnements >> Analyse des contraintes >> Créer une étude.
 - Il faut définir trois choses :
 - Le matériau mais ça a été fait juste avant, donc c'est bon,
 - Les entités fixes ; on en n'a qu'une, c'est la face inférieure du support.
 - Le chargement, c'est-à-dire les efforts que subit la pièce. On va considérer

F = 30 N dans l'axe de l'alésage moteur Contrainte maxi : $\sigma_{max} =$ ______

Déplacement maxi : d = _____

▲ Analyser les résultats de la simulation.

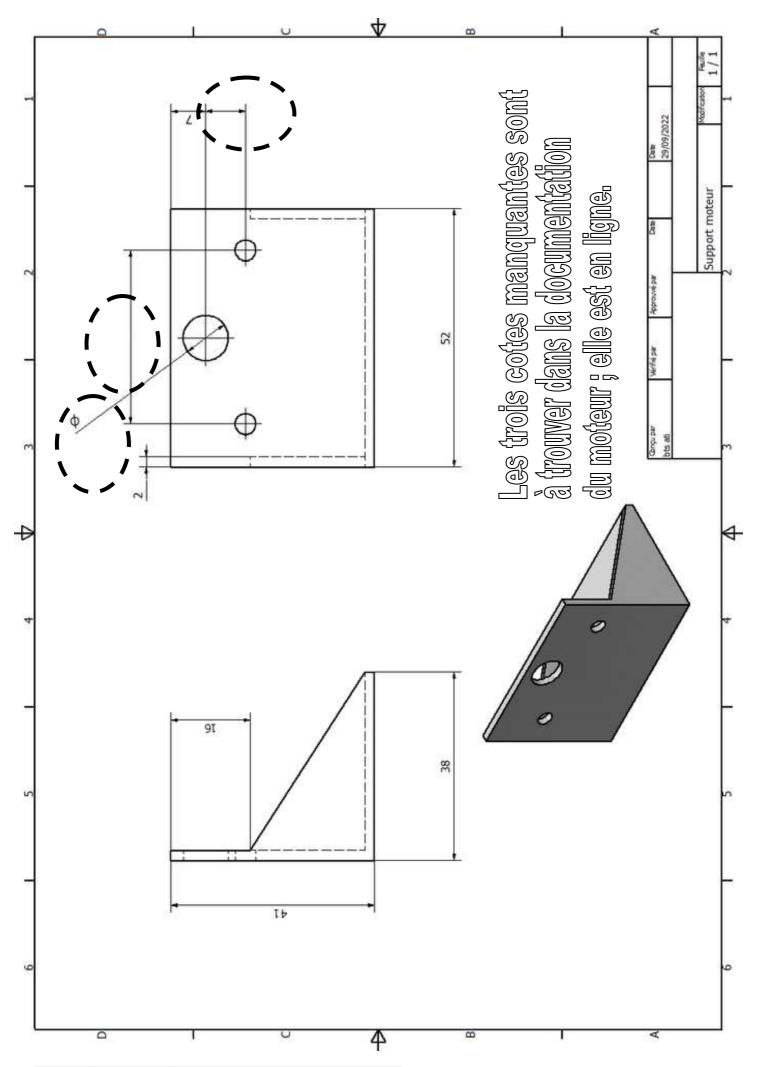
- \rightarrow Analyse des contraintes : \Box la pièce résiste car $\sigma_{max} < R_e$
- \square la pièce casse car $\sigma_{max} > R_{e}$

 \rightarrow Analyse des déformations : \square ok car $d < d_{max}$

 \square pas ok car $d > d_{max}$

PROTOTYPAGE DU SUPPORT MOTEUR PAR IMPRESSION 3D

■ Préciser le numéro d'étape :


Il est à prendre dans le synoptique du document principal de l'activité.

▶ Obtenir une impression 3D de la pièce « Support moteur » en suivant le Quick Start de la machine.

- Il faut choisir une imprimante 3D parmi celles disponibles.
- Le Quick Start est en ligne sous « Prototypage >> Imprimantes 3D ».

ÉVALUATION DES PERFORMANCES DU SUPPORT MOTEUR PAR <u>TEST RÉEL</u>

 ▶ Préciser le numéro d'étape :	
¥ Analyser les résultats du test. → Analyse des contraintes : □ la pièce résiste □ la pièce casse	
Analyser les résultats du test. → Analyse des contraintes : □ la pièce résiste □ la pièce casse	
·	d
ASSEMBLAGE COMPLET Préciser le numéro d'étape :	
→ Assembler tous les composants. ✓ Vous devez joindre votre pièce à celles des autres.	
→ Analyser l'assemblage et indiquer les <u>difficultés</u> et/ou les <u>défauts</u> observés.	

